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AERONAUTIC! SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

W 
9 

m 

I 

P 

S 
SW 

b" 
c 

A 

V- 

4: 

L 

D 

DO 

D, 

D* 

c 

- 
‘I - 

Length-----. 
Time-------- 
Force _____ _ _ _ 

Power- _ _ _ _ _ _ 
S&L - - - - - _ 

--- 

Symbol 

Metric English 

Unit Abbrevia- 
tion Unit Abbreviation 

1 meter----- _______ -----_ m foot (or mile) _ ___-___- 

k 
second---- __--- -------_ 

ft (or mi) 

weight of 1 kilogram----- k9g 
second (or hour) _______ set (or hr) 
weight of 1 pound----- lb 

P horsepower (metric) _ _ _ _ _ - - _ kph _ _ _ 
kilometers per hour------ 

horsepower _ _ - L _ - _ _ - _ _ hp 
V meters per second..----.-- 

mrles per hour- _ _ _____ mph 
mps feet per second-------- fps 

.2. GENERAL SYMBOLS 

Weight=mg 8 Kinematic viscosity 
Standard acceleration of gravity=9.80665 m/s” p Density (mass per unit volume) 

or 32.1740 ftjsec’ Standard density of dry air, 0.12497 kg-mV4-s2 at 15’ C 

Mass=E and 760 mm; or 0.002378 lb-ftp4 see2 

Momen: of inertia=mk2. (Indicate axis of 
Specific weight of “standard” air, 1.2255 kg/m3 or 

0.07651 lb/cu ft 
radius of gyration k by proper subscript.) 

Coefficient of viscosity 
3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Chord ‘. 

Aspect ratio, $ 
True air speed 

Dynamic pressure, ;pv2 
L Lift, absolute coefficient C”=bx 

Irag, absolute coefficient C==-$ 

Profile drag, absolute coefficient CDo=s 

Induced drag, absolute coefficient CDi=$ 

Parasite drag, absolute coefficient CDp=$$ 

Cross-wind force, absolute coefficient Cc=;; 

. %n . tt 

Q 
cl 
R 

o! 
e 

a0 
w 
ff, 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) 
Resultant moment 
Resultant angular velocity 

Reynolds number, p $ where I is a linear dimen- 
sion (e.g., for an airfoil of 1:O ft chord, 100 
mph, standard pressure at 15’ C, the corre- 
sponding Reynolds number is 935,400; or for 
an airfoil of 1.0 m chord, 100 mps, the corre- 
sponding Reynolds number is 6,865,OOO) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero- 

lift position) , 
Flight-path angle 

. 
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A SMALL-DEFLECTION ‘THEORY FOR CURVED SANDWICH PLATES l 
Ry MANUEL STEIN and J. MAYERS 

transverse shear, covers those types of sandwich plates 
having constant cylindrical curvature, similar properties on 
the average above and below the middle surface, and 
essentially constant core thickness. 

D, 

SYMBOLS 

flexural stiffness of isotropic sandwich plate, 

inch-pounds (;y;2) j ^ 

SUMMARY 

A small-dejlection theory that takes into account deformations 
due to transverse shear is presented for the elastic-behavior 
analysis of orthotropic plates of constant cylindrical curvature 
with considerations of buck&g included. The thedry is 
applicable primarily to sandwich construction. 

INTRODUCTION 

The usual sandwich plate as used in aircraft construction D 
consists of a light-weight, low-stiffness core material bonded 

_ _ 
Et3 

flexural stiffness of ordinary plate, inch-pounds 

or riveted between two high-stiffness cover sheets. The 120-k? > 
elastic behavior of such plates under loading cannot be 
analyzed by conventional plate and shell theories in general 

Dz, D, 

since these theories neglect deformations due to transverse 
shear, an effect which may be of great importance in sand- 
wich construction. 

DW 

Many authors have considered transverse shear deflections 
DQ,, DQ” 

in analyzing the elastic behavior of flat sandwich plates by 
means of small-deflection theories (see, for example, 
references 1 to 4). Most of this work has been concerned 

DQ 

with sandwich plates of the isotropic type (for example, E 
Metalite, cellular-cellulose-acetate core). In reference 3, 
however, sandwich plates of the orthotropic type. are also 
considered (for cxnmple, corrugated core). 

ES 

The treatment of curved sandwich plates in the Ez, E, 

flexural stiffnesscs of orthotropic plate in axial 
and circumferential directions, inch-pounds 

twisting stiffness of orthotropic plate in 
zy-plane, inch-pounds 

transverse shear stiffnesses of orthotropic 
plate in axial and circumferential directions, 
pounds per inch 

transverse shear stiff ncss of isotropic sandwich 
plate, pounds per inch 

Young’s modulus for ordinary plate, pounds 
per square inch 

literature has not been as general as that accorded flat 
sandwich plates, although several specific studies of the 
curved isotropic sandwich plate have been published. These 
studies have covered (a) simply supported, slightly curved 
isotropic sandwich plates under compressive end loading 
(reference l), (b) axially symmetric buckling of a simply 
supported isotropic sandwich cylinder in compression 
(reference l), and (c) a nonbuckling small-deflection theory 
for isotropic sandwich shells which takes into account not 
only deflections due to shear but also the effects of core 
compression normal to the faces (reference 5). 

GZU 

Young’s modulus for faces of isotropic sand- 
wich plate, pounds per square inch 

extensional stiffness of orthotropic plate in 
axial and circumferential directions, pounds 
per inch 

shear stiffness of orthotropic plate in zy-plane, 
pounds per inch 

The need for a general theory for curved sandwich plates 
which is applicable to orthotropic as well as isotropic types 
and which includes both nonbuckling and buckling effects has 
led to the development of the theory presented in this report. 
This theory, which takes into account deflections due to 

L,, LE-1) L~,v2,v4,v--4 mathematical operators defined 
in section entitled “Theoretical Derivations” 

Mz, Mv bending moments on plate cross sections 
perpendicular to x- and y-axes, respectively, 
inch-pounds per inch 

MW twisting moments on cross sections perpendic- 
ular to x- and y-axes, inch-pounds per inch 

Nz, Nu resultant normal forces in x- and y-directions, 
pounds per inch 

NW resultant shearing force in xy-plane, pounds 
per inch 

P lateral loading, pounds per square inch 

1 Bupersedes NACA TN 2017, “ A Small-Deflection Theory for Curved Sandwich PI&s” by Mmuel Stein and J. Mayers, 1050. 
!m75!34-52 1 
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Qz, Qv 
h 

r 
t 
ts 

IL, v,w 

x, Y, 2 
Yzv 
Ez, E!l 

resultant shearing forces in yz-plane and 
xz-plane, respectively, pounds per inch 

depth of isotropic sandwich plate measured 
between middle surfaces of faces, inches 

con&ant radius of curvature of plate, inches 
thickness of ordinary plate, inches 
thickness of face of isotropic sandwich plate, 

inches 
displacements in x-, y-, z-directions, respec- 

tively, of a point in middle surface of 
plate, inches 

rectangular coordinates 
shear strain in xy-plane 
normal strains in asial and circumferential 

directions 
Poisson’s ratio for ordinary plate 
Poisson’s ratios for orthotropic plate, defined 

in terms of curvatures 
Poisson’s ratios for orthotropic plate, defined 

in terms of normal strains 

THEORETICAL DERIVATIONS 

GENERALTHEORY 

In developing the equations of equilibrium for the ortho- 
tropic curved plate element, shown in figure 1, the basic 
assumptions made are that the materials are elastic, that the 
deflections are small compared with t,he plate thickness, 
and that the thickness is small compared with the radius of 
curvature. The last assumption implies that the shear 
forces Nzy and N,, are equal and that the twisting moments 
MW and M,, are equal. 

Eleven basic equations,-As in ordinary curved-plate 
theory, 11 equations exist for orthotropic curved plates 
(considering deflections due to shear) from which the dis- 
placements acting in the plate can be determined. The 11 
equations consist of 5 equilibrium equations, 3 equations 

-I-- 

;F,u 
?fJ v 

5 w 

relating resultant forces to strains, and 3 equations relating 
resultant moments with curvatures and twist. 

The first five equations, expressing force equilibrium in 
the x- and .y-directiotis, moment equilibrium about the x- 
and y-axes, and force equilibrium in the z-direction, are 

(14 

(lb) 

UC> 

It should be noted that in these equations, higher-order 
terms have been neglected in accordance with considerations 
similar to those of reference 6. 

For the orthotropic curved plate, the relations between 
the resultant middle-surface forces and the middle-surface 
strains are (see appendis) 

(24 

(2b) 

6-w 

From reference 3, the corresponding relations between 
resultant moments and curvatures and twist are 

A~,,, =; D,,, 2 cw- - 1 aQ, 1 aQz 
ax by DQy ax Do, ay (3c) 

Equations (l), (2), and (3) a,re the 11 basic equations neces- 
sary for determining the forces, moments, and deflections 
acting in the plate. The number of equations can be reduced 
to five, however, by substituting equations (2) and (3) into 
equations (1). In this manner, five differential equations are 
obtained for determining the resultant transverse shear 
forces Qz and fJy and the displacements u, v, and w. 
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The 11 basic equations presented are not restricted to de- 
flection problems alone but may be applied to buckling prob- 
lems as well by considering the changes that occur during 
buckling and modifying equations (1) accordingly. For 
equilibrium of the curved plate element after buckling, 
equations (1) can ,be written with N,, Nzy, N,, Qz, Q ,, M,, 
M,,, M,, and w replaced by N,,+N,,, N,,+N,,, . . . , 
wO+wl, respectively, where the subscript 0 refers to values 
prior to buckling and the subscript 1 refers to changes in 
these values that occur during buckling. For equilibrium 
of the curved plate element prior to buckling the following 
equations apply: 

WC,+ “Go - -- ax by --O 

"Qz, a&,, dr+F+NzO ;F+Nv, (++%;)+2N,,, ag$+q= 0 

Subtracting the previous equations from equations (1) 
(as modified) gives the following equilibrium equations which 
apply to buckling problems: 

ahi,, a%, 
x+-a?J=O (44 

(4b) 

(4c) 

(44 

(44 

In equation (4e) the terms Nzl ZYJ NV1 pj 
a3.0, a*w 
w 

and N,,, L- ax by 
may be neglected since they will be small compared with 

Nzo gi, N,, $7 an 
a29.0 

dN~o&y* Also, if the deflection 

3 

prior to buckling is zero or constant as occurs for many 
problems (for example, axial compression, hydrostatic pres- 
sure), all derivatives of w,, vanish. For this type of problem 
equation (4e) becomes 

@ &  a&q b2W, bZZD, NV1 
ax +,,+Nzo ax*fNu~ by* a2w1 -0 +,+ 2Nw~ ax by 

_.. (4 e’> 
The six equations relating changes in middle-surface re- 

sultant forces with buckling strains and changes in moment 
with buckling distortions are identical with equations (2) 
and (3) with the subscript 1 added to N,, N,,, NV, QZ, QU, 
M,, WV, M,, u, v, and w. 

The 11 equations, given by equations (4) and equations 
(2) and (3) (with subscript l), apply to buckling problems 
in general (with equation (4e) or (4e’) as required) and can 
be used to obtain the critical values of the loads acting on 
the plate. As is shown in the next section, however, for the 
case in which the deflection prior to buckling is zero or con- 
stant, the 11 equations can be suitably conibined to yield 3 
equations in wl, Qzl, and Qrl, a form convenient for applica- 
tion to plates of sandwich construction. 

Reduction to three equations for buckling problems in 
which the de0ection prior to buckling is zero or constant.- 
The reduction of the 11 equations t,o 3 equations in wl, Qz,, 
and Qf,, is achieved in scvcral steps as follows: 

By differentiating equation (4~) with respect to 2, equa- 
tion (4d) with respect to y, and adding the results to obtain 
the relationship 

equation (4~‘) may be rewritten as 

a*n4z, a*n4z, a*Mg, N;,, N a*wl 
ax* 

--+ 2 ~&&+dy2+~ + =o ax* 

NV0 ~+2N,,,~y=0 (4e”) 

Next, equations (2) and (3) (with subscript 1) are substituted 
into the equilibrium equations (4a) to (4d) and (4e”) to give 

a*th 1 aw, --- - 
w r by +P’Z 

(6) 
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where L, is thr linear differential operator defined by 

a4 D I, 
1 -pzpv w 

At this point, sis equations have been eliminated and, there- 
fore, five equations remain-equations (5)) (6)) (7)) (8), and 
(9) in UJ, VJ, WI, Qx,, and Q,,. 

A further reduction in the number of equations and un- 
knowns is effected by first solving equations (5) and (6) to 
obtain relations from which u1 and vl can be determined 
and then substituting for u1 and vu1 in equation (9). The 
cspressions obtained b.y solving equations (5) and (6), in 
accordance with the rules governing t#he multiplication of 
linear operators, are 

(10) 

and 

where LE is thr linear tliffcrcntial operator dcfinccl by 

The relationships given by equations (10) and (11) may 
be written in a form more suitable for substitution into 
equation (9) by difercntiating equation (10) with respect 
to r, equation (11) with respect to yy, and then, symbolically 

au, av, solving the equations for - and -7 respectively, to give ax by 

(1% 

(13) 

where LE-l is defined by LB-l(L~w,)=LE(L~:-lw,)=~l. The 
inverse operator L, -l is similar to the inverse operator v-‘j 

defined in reference 7, and, as is shown subsequently, L,-* 
reduces to V+ for the special case of the isotropic p1at.e. 

Substituting the expressions for 2 and 2 from equations 

(12) and (13) into equation (9) and replacing T by 

At this stage, the original 11 equations have been reduced 
to the 3 equations (14), (7), and (8), in the 3 unknowns 
WI, B,, and Q,,. 

For most problems, equations (14), (7), and (8), together 
with proper boundary conditions, can determine the elastic 
stability criteria for an orthotropic curved plate subjected to 
middle-surface loadings. It should be noted, however, that 
the three equations are not sufficient if boundary conditions 
are specified on the displacements u, and vl. For boundary 
conditions on u1 and cl, as well as wl, equations (10) and 
(11) must also be empIoyed. When boundary conditions 
arc not spccificcl on u1 and v1 (the case when only equations 
(14), (7), and (8) are usecl), certain boundary conditions arc 
implied, nevertheless, by equations (10) and (1 I), consistent 
with the expression for wl. A discussion of similar implied 
boundary conditions on u1 and VI is included in reference 7. 

SPECIAL CASES OF BUCKLING EQUATIONS 

Isotropic curved sandwich plate with non-direct-stress- 
carrying core.-For the isotropic sandwich plate with non- 
direct-stress-carrying core, the physical constants bear the 
following relationships to those of the orthotropic plate: 

DQZ= Do,= DQ 

Pz=Pv=P’z=P’v=P 

D,=D,= D,(l -p2) 

D,,D,(l -P) 

Ex=&= 2 E,t, 

Gzu=$+ 

These relationships permit equation (14) to be simplified as 
follows: 

D,04w,+2~~-4~~-(Nzo~+Nuo~+2Nz~o *>- ax by 

~v2(~+?!$)=o (15) 
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where 

and VW4 is defined by V-“(V”W,)=V~(V-~W,)=W~. 

In thiscase, however, equations (7) and (8) are not needed 
‘aQ,, aQ,, : __- to obtain the quantity dZ + bY , smce this quantity can 

be found more conveniently from equation (4e’). From 
equation (4e’), therefore, 

a&q a&v, Nv, -- 
brf ay -- -+Nzo s+N,, %+2Nz,, ?!k 

kc bY 

a&z, a&q Substituting for ~ __ ax + ay in equation (15) gives 

(16) 

The term -N”,/r, which appears in equation (14) for the 
adw, orthotropic plate as + LB-I ~ rccluces to zt,!5 V-4 b4W1 ax41 ’ r2 ax4 

for the case of the isotropic plate. If this result is used in 
equation (16), the equation of equilibrium for the isotropic 
curved sandwich plate with non-direct-stress-carrying core 
becomes 

If the radius is taken infinite, equation (17) becomes 
equivalent to equation (71) of reference 4. 

Isotropic curved plate, deflections due to shear neg- 
lected.-The present theory can be reduced to a known 
theory for ordinary curved plates by appropriate substitu- 
tions for the physical constants. For an ordinary plate, the 
physical constants become 

DQz= DQv= 03 (no shear deflections) 

P,=PY=P’a!=P’,=P 

D,=D,=D (l-p? 

Da,= D O-P) 

E,- Ev=Et 

Et 
&,=2(1 +p*) 

Upon substitution of these constants into equation (14), 
the resulting equation becomes independent of equations 
(7) and (8) and the equilibrium equation of the ordinary 
curved plate, therefore, is given by 

Dv~~ 1 @v-4 a4W1 ~- 
~2 ax4 N,~+N,, $+2Nru0 s)=O 

(18) 

Equation (18) is equivalent to the modified equilibrium 
equation for ordinary curved plates presented in reference 7. 

CONCLUDING REMARKS 

A theory has been developed for analyzing the elastic 
behavior of orthotropic curved plates, that takes into account 
the effect of deflections due to shear and requires the use of 
12 physical constants to characterize the plate. Seven of 
the physical constants appearing in the equations of equi- 
librium are directly associated with the flat-orthotropic- 
plate theory presented in NACA Rep. 899. The remaining 
five physical constants arc included in the present theory 
to account for the stretching under loading of the middle 
surface of the curved plate. 

For each type of orthotropic plate, the 12 physical con- 
stams may be evaluated either from the geometry of the 
cross sections and the propertics of the materials used OI 
by direct t,csts conducted on sample specimens. Bccausc 
two reciprocal relationships exist (see appendix), only 10 
of the constants need be determined independently. 

The theory presented in this report does not take into 
account the compressibility of the sandwich plate in a direc- 
tion normal to the faces. Such an cfIect does not enter into 
flat-sandwich-plate theory but might be of importance in 
certain types of curved sandwich plates where the elastic 
constants of the core material are small compared with 
those of the face material. 

For practical sandwiches of the end-grain-balsa or 
corrugated-core types, order-of-magnitude considerations lead 
to the conclusion that the effect of core compressibility will 
be negligible as regards both buckling loads ancl deflections. 
For sandwiches with less stiff cores-for example, cellular 
cellulose acetate-the effect of core compressibility will be 
more important. Even for such cores, however, in the case 
of all the numerical examples given in NACA TN 1832, the 
effect of core compressibility is negligible in comparison with 
the effect of transverse shear deformations for sandwich-type 
circular cylindrical shells. The present theory, in which the 
core is assumed to be incompressible in a direction normal to 
the faces, appears, therefore, to be applicable to most prac- 
tical sandwich plates. 

LANGLEYAERONAUTICALLABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., November i%‘, 1949. 



APPENDIX 
DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS 

Resultant forces.-The relations between the elastic 
middle-surface strains and forces. satisfying the foregoing 

’ definitions, can be written as 

Nz Nu ez=-- pfu - 
under loading in the middle surface of the curved plate. In 
this appendix the five additional constants are defined, and 
expressions for the resultant forces, involving these con- 
stants, are derived. 

Physical constants.-The seven flat-plate constants are the 

Ez Eu 

Nu Nz CUE--- pIz - 
Eu Ez 

NW yzu=- 

The orthotropic curved plate (effects of transverse shear 
being considered) is characterized by 12 physical constants, 
7 of which are associated with flat plates, as presented in 
reference 3. The remaining five constants enter the present 
theory because of the additional stretching strain developed 

flexural stiffncsses D, and D,, the flexural Poisson ratios pLz Gzu 

(Al) 

and pLv, the twisting stiffness D,,, and the transverse shear 
stiffnesses Da, and DQv. As derived in reference 3, the first 
four of these constants are related by 

N,, in terms of the strains to give 
The three strain equations can be solved for N,, N,, and 

d4,= /-dL 

The five additional constants appearing in the curved-plate 
theory are the extensional stiffnesses E, and E,, the 
extensional Poisson ratios pLIZ and p”lU, and the shearing 
stiffness G,,. The first four constants are found by a 
procedure similar to that used in reference 3 to be related by 

~‘2% = du-G 
Substituting the expressions for the middle-surface strains 

of a cylindrical section in terms of middle-surface displace- 

L42) 

As a result of these two reciprocal relationships, only 10 of ments 
the 12 physical constants need be determinedindependently. 

The five additional physical constants are defined in the 
dU 

same manner as the flat-plate constants of reference 3-- 
h”=bz 

that is, by considering the effect of imposing particular bv w 
loading conditions on the element shown in figure 1. To 
obtain E,, for example, only the middle-surface forces N, 

E”=by-r 

are assumed to be acting on the element. As a result of 
this loading, the strain cZ is induced in the middle surface. 

r,=“+” 
by ax 

The stiffness E, is then defined by the relation Ez=% into equation (A2) gives 
when only N, is acting. 

The Poisson effect of the forces N, acting on the element 
is to introduce a strain Q, negative with respect to E=, in the 
middle surface. The constant P’~ is then defined by the 
relation ,LL’== -?! 

EZ 
when only N, is acting. 

In a similar manner, E,, kLIu, and G,, are defined as 

Eg=$! when only N, is acting, pfU=-z when only N, is 

acting, and GZU=2. 
z 
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Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis 

Designation 

Moment about axis 

Force 
(parallel 

Sym- to axis) 
bol 

Sym- symbol Designation bol Positive 
direction 

Angle Velocitjes 

Linear 
&sign% sym- (compo- Angular 

tion bol nent along 
axie) 

-- 

Longitudinal ________ X X Y-Z U 
Lateral ____._____-_____ Y Y 

Rolling _______ L 
Pitching.--..- M 

Roll _________ + P 
z-x Pitch _______ 0 v 

Normal _______________ Z Z Pawing _______ N 
Q 

X-Y Yaw __------ $b W P 

Absolute coefficients of moment 
cm=-$ C,=N 

(pitching) 
qbfJ 

(yawing) 

Angle of set of control surface (relative to neutral 
position), 6. (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D Diameter j 

i/D 
Geometric pitch P Power, absolute coeflicient I&=&~ 
Pitch ratio 
Inflow velocity a Speed-power coefficient = 6pv6 

Vf J 
pn2 

K Slipstream velocity 
T Thrust, absolute coefficient CT=---& 

9 Efficiency 
n Revolutions per second, rps 

‘, , :, ,’ ‘. : _ ~, _ _. ,..- ,_ -. . _~, .-.- .- -. -. ,, _- ._ ~. 
8 Torque, absolute coefficient Q, Eff ectlve hehx angle= tan-’ 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-lb/set 1 lb=0.4536 kg 
1 metric horsepower=0.9863 hp 1 kg=2.2046 lb 
1 mph=04470 mps 1 mi=1,609.35 m=5,280 ft 
1 mps=2.2369 mph 1 m=3.2808 ft 

II .- 


